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Abstract 

Background  Patient-ventilator asynchronies are usually detected by visual inspection of ventilator waveforms but 
with low sensitivity, even when performed by experts in the field. Recently, estimation of the inspiratory muscle pres-
sure (Pmus) waveforms through artificial intelligence algorithm has been proposed (Magnamed®, São Paulo, Brazil). 
We hypothesized that the display of these waveforms could help healthcare providers identify patient-ventilator 
asynchronies.

Methods  A prospective single-center randomized study with parallel assignment was conducted to assess whether 
the display of the estimated Pmus waveform would improve the correct identification of asynchronies in simulated 
clinical scenarios. The primary outcome was the mean asynchrony detection rate (sensitivity). Physicians and respira-
tory therapists who work in intensive care units were randomized to control or intervention group. In both groups, 
participants analyzed pressure and flow waveforms of 49 different scenarios elaborated using the ASL-5000 lung 
simulator. In the intervention group the estimated Pmus waveform was displayed in addition to pressure and flow 
waveforms.

Results  A total of 98 participants were included, 49 per group. The sensitivity per participant in identifying asyn-
chronies was significantly higher in the Pmus group (65.8 ± 16.2 vs. 52.94 ± 8.42, p < 0.001). This effect remained when 
stratifying asynchronies by type.
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Conclusions  We showed that the display of the Pmus waveform improved the ability of healthcare professionals to 
recognize patient-ventilator asynchronies by visual inspection of ventilator tracings. These findings require clinical 
validation.

Trial registration: ClinicalTrials.gov: NTC05144607. Retrospectively registered 3 December 2021.

Keywords  Mechanical ventilation, Artificial ventilation, Interactive ventilatory support, Respiratory diaphragm, 
Respiratory failure

Background
During assisted modes of mechanical ventilation, patient-
ventilator asynchronies can occur because of a mismatch 
between neural (patient) and ventilator inspiratory and 
expiratory phases [1]. Patients on mechanical ventilation 
present some types of asynchrony in up to 40% of respira-
tory cycles [2–5]. In general, they can be characterized by 
occurring in situations of excessive ventilatory assistance 
and/or low respiratory drive and in situations of insuffi-
cient ventilatory assistance and/or increased respiratory 
drive. The occurrence of asynchronies has been associ-
ated with longer lengths of mechanical ventilation and 
even higher mortality rates [6, 7] especially double trig-
ger[8] or ineffective effort[9] when they occur in clusters 
with high power and of long duration[10, 11]. Resolution 
of these asynchronies through changes in ventilator set-
tings or other measures, such as sedation, depends on the 
correct identification of the type of asynchrony. Misdiag-
noses can lead to inadequate adjustments of ventilatory 
parameters resulting in a vicious cycle of sedation, con-
trolled mechanical ventilation, and diaphragmatic dys-
function [3, 5, 12–14].

Typically, asynchronies are detected at the bedside by 
healthcare professionals by visual inspection of ventilator 
waveforms [1, 15]. However, the sensitivity of this visual 
analysis is low even when performed by experts in the 
field, amounting to less than a third of asynchronous res-
piratory cycles [16]. To improve this sensitivity, the dis-
play of the electrical activity of the diaphragm (Eadi) or of 
the esophageal or transdiaphragmatic pressure signal has 
been proposed as a way to enhance asynchrony detection 
[17–21]. However, these techniques require the inser-
tion of esophageal catheters, which is invasive and can be 
technically challenging.

An alternative way to obtain inspiratory muscle pres-
sure (Pmus) estimations has been recently proposed 
(Magnamed®, São Paulo, Brazil). Through artificial intel-
ligence, a proprietary algorithm receives pressure, flow, 
and volume as inputs and returns the estimated Pmus 
waveform on the ventilator screen (for further details, 
see online supplement). The display of Pmus could help 
healthcare providers to assess whether the start and 
end of the mechanical breath are in synchrony with 
the patient effort as visualized in the Pmus waveform. 

In the present study, we aimed to test the hypothesis 
that the visualization of Pmus together with the other 
ventilator waveforms on the ventilator display would 
improve the ability of healthcare professionals to identify 
asynchronies.

Material and methods
Study design and setting
This is a prospective single-center randomized study with 
parallel assignment conducted at the Research and Edu-
cation Institute (IEP) of the Sírio Libanês Hospital (São 
Paulo, Brazil).

Study participants
Physicians and respiratory therapists who worked in one 
of the eight mixed medical/surgical intensive care units of 
the Hospital Sírio Libanês, São Paulo, Brazil, were invited 
via email to participate in the study. All participants were 
experienced with the bedside detection of asynchronies 
by visual inspection of ventilator waveforms.

Randomization
Individuals who agreed to participate were randomized 
on a 1:1 ratio, stratified by time of experience and pro-
fession, to the control or the intervention group (Pmus 
group). Randomization was performed using a com-
puter-generated random list. Participants remained una-
ware of the group to which they were assigned until the 
session began.

Interventions
Before randomization, participants watched a 30-min 
online refresh course on asynchronies definitions based 
on previously published criteria [1, 22] using the Zoom® 
platform (Zoom Video Communications, California, 
USA). All the waveforms presented in the course were 
obtained from the literature. After the presentation, par-
ticipants could interact with instructors in a questions 
and answers session.

After this run-in phase, participants were randomized 
to either the control or the Pmus group. None of the par-
ticipants had previous experience with the ventilator 
used for the simulations or with the display of Pmus wave-
forms estimated with artificial intelligence. Both groups 
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were exposed to identical recordings of simulated sce-
narios containing asynchronies or synchronous cycles 
generated using the ASL-5000 active breathing simulator 
(Ingmar Medical, Pittsburg, PA) connected to the ventila-
tor FlexiMag Max 700 (Magnamed, São Paulo, Brazil).

A total of 49 scenarios were elaborated including syn-
chronous cycles and the following asynchronies: inef-
fective effort, auto-triggering, double-triggering, reverse 
triggering, reverse triggering with double cycling, pre-
mature cycling, and late cycling. The scenarios were 
created using different conditions of respiratory system 
mechanics and patient effort in accordance with stand-
ard asynchronies definitions published in the literature 
(Table 1) [1, 22]. The asynchronies were classified using 
the patient effort programmed in the lung simulator ASL 
5000, which was considered the gold standard Pmus. The 
Pmus waveform displayed on the ventilator was estimated 
with a machine learning algorithm embedded in the 
ventilator FlexiMag Max 700 and based on proprietary 
software (Magnamed, São Paulo, Brazil). The algorithm 
uses a recurrent neural network called Long Short-Term 
Memory (LSTM) to estimate Pmus from airway pressure, 
flow, and volume (for further details, see Additional file 1: 
eFigure1) and has been validated against simulated data 
(for further details, see Additional file  1: eFigures  2–4). 
The software is not yet approved for clinical use. A clini-
cal validation study is ongoing.

Each scenario contained a 30-s recording followed by 
30  s of a still ventilator screen. During this one-minute 
period, participants were instructed to choose whether 
they identified asynchronies and which asynchrony was 
present using the voting tool Mentimeter (Mentimeter, 
Sweden).

For the control group, the recordings showed conven-
tional pressure and flow waveforms over time (Additional 
file 1: eTable1). For the Pmus group, using the same simu-
lated scenarios and in the same order, the waveform of 
estimated Pmus over time was also displayed, in addition 

to the pressure and flow waveforms (Fig.  1 and Addi-
tional file 1: eFigures 5–12).

Study endpoints
The mean asynchrony detection rate (sensitivity) was the 
primary endpoint, and specificity was a secondary end-
point. Sensitivity refers to the probability of correctly 
identifying an asynchrony, and specificity was defined 
as the probability of correctly identifying the absence of 
asynchronies. Both probabilities were calculated for each 
participant for all asynchronies together and according to 
asynchrony type considering the answer key.

Sample size estimation
Based on a previous study [16] in which participants had 
an average sensitivity of 28% to detect asynchronies, we 
estimated that the inclusion of 98 participants would 
have 90% power to detect a 10-percentage-point differ-
ence in the mean sensitivity between groups with a two-
tailed significance level of 0.05 assuming the standard 
deviation to be 15 percentage points.

Data analysis
Deidentified participants’ responses were stored and 
subsequently compared against the answer key. For 
each participant, sensitivity and specificity were calcu-
lated considering all asynchronies together and then 
again according to asynchrony type. The means of these 
variables were compared between the control and Pmus 
groups.

Data normality was verified by the Shapiro–Wilk test. 
Variables with normal distribution were described using 
mean and standard deviation and compared using the 
Student’s t test, while variables with non-normal distri-
bution were described as median and interquartile range 
and compared using the Mann–Whitney test.

A p < 0.05 was considered significant. Statistical analy-
sis was performed using R (version 3.5.2).

Table 1  Definitions of the types of asynchronies

Pmus inspiratory muscle pressure

Types of asynchronies Definition

Double-triggering Two ventilator cycles triggered by a single effort

Ineffective effort Presence of effort (Pmus) without ventilator triggering

Premature cycling Inspiratory time too short compared to the patient, defined as cycling to the expiratory phase before peak Pmus

Delayed cycling Inspiratory time too long in relation to the patient: defined as cycling to the expiratory phase after the end of the effort (Pmus)

Reverse triggering Pmus follows the controlled (or auto-triggered) cycle with a fixed frequency and delay. May or may not generate double cycle

Reverse triggering with 
double cycling

Pmus follows the controlled (or auto-triggered) cycle with a fixed frequency and delay. May or may not generate double cycle

Auto-triggering Nonpatient effort (Pmus) with ventilator triggering
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Results
A total of 98 participants were included, 49 per group. 
Most participants had more than 5  years’ experience 
(65.3% in the control group vs. 67.4% in the Pmus group). 
Groups were also balanced regarding profession (physi-
cians 25.45% in the control group vs. 23.07% in the Pmus 
group, and respiratory therapists 74.55% in the control 
group vs. 76.93% in the Pmus group).

Mean sensitivity was higher in the Pmus group as com-
pared to the control group (65.8 ± 16.2 vs 52.94 ± 8.42%, 
p < 0.001) (Fig.  2). This effect was observed also when 
we considered asynchronies by type (Additional file  1: 
eFigure 13). On the other hand, there was no difference 
between the groups in the identification of synchro-
nous curves. The mean specificity per participant was 
similar between groups independently of asynchrony 
type (Additional file 1: eFigure 14).

Discussion
We found that the addition of the estimated Pmus to the 
pressure and flow waveforms increased the sensitivity of 
respiratory therapists and physicians to identify various 
types of asynchronies without affecting their specificity. 
Asynchrony detection rate in the control group was just 
over 50% and increased by approximately 20% in the Pmus 
group.

Despite all advances in mechanical ventilation, patient-
ventilator asynchrony is still common [2–5] and its 
detection remains a challenge [16, 23–25]. Undoubtedly, 
there is a gap in knowledge among healthcare profession-
als that hinders the correct identification of asynchronies 
[16, 25–27]. However, even experts in the field have dif-
ficulty detecting asynchronous cycles, with sensitivity 
values reported as low as 28% [16]. Monitoring of esoph-
ageal pressure or of electrical activity of the diaphragm 
can improve the detection of asynchronies, but those 

Fig. 1  Schematic example of waveforms from one of the simulated scenarios. The tracings represent the airway pressure, flow, and estimated 
inspiratory muscle pressure (Pmus). Note that the second ventilatory cycle is controlled and that the effort starts during the ventilator inspiratory 
phase, simulating a reverse triggering event. The Pmus waveform with the vertical line indicating the start of effort was available only to the Pmus 
group
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monitoring techniques are invasive, costly, and require 
specific equipment [17, 19, 20]. Automated detection of 
asynchronies based on ventilator waveform analysis has 
also been proposed, such as the Better Care ® [28] but 
has not been incorporated into clinical practice. Recently 
a pilot study proposed the use of a machine learning 
(ML) algorithm to replicate human expertise in detect-
ing patient-ventilator cycling asynchrony based on wave-
form analysis with a strong agreement [29]. Although of 
value, these efforts to replicate human expertise have the 
inherent limitation of the low performance of humans 
to detect asynchronies with only conventional ventilator 
waveforms. Ge H et  al. applied ML to identify patient-
ventilator asynchrony offline using big data in a retro-
spective study. The results corroborate the importance to 
recognize asynchronies and to use ML for this purpose in 
clinical practice [30].

In the current study, we took the approach to nonin-
vasively estimate the Pmus waveform based on artificial 
intelligence and used that information together with con-
ventional ventilator waveform. At the conceptual level, 
this approach is equivalent to having the Pmus obtained 
from esophageal pressures monitoring but without the 
invasiveness and technical challenges of the esophageal 
balloon placement. We confirmed our hypothesis that 
the display of this additional waveform facilitated asyn-
chronies detection.

Our finding of a 20% increase in the detection rate of 
asynchronies corresponded to an absolute increase of 

13 percentage points. Conversely, specificity was high in 
the control group and was not affected by the interven-
tion likely because health professionals seldom overdiag-
nose asynchronies. We believe that this modest increase 
in the asynchronies’ detection rate was at least in part 
related to the fact that participants had no previous train-
ing with visualization of the Pmus and thus no experi-
ence relating that waveform to pressure and flow. If that 
is the case, it is possible that the diagnostic performance 
increases with practice suggesting that future studies 
should include a run-in phase consisting of training ses-
sions. For example, the detection rate of auto-triggering 
was still less than 60% in the intervention group when it 
should have been easy to the trained eye to identify that 
the cycle was not accompanied by muscle effort (Addi-
tional file 1: eFigure 9). Furthermore, incorporating visual 
cues in the ventilator display to indicate the phases of the 
patient’s effort during the respiratory cycle, in addition to 
simply incorporating the Pmus waveform, could facilitate 
the detection of asynchronies.

Our study has some strengths and limitations. In the 
run-in period, all participants had access to a lecture with 
the goal to uniformize their definitions of the various 
asynchronies according to the current literature [1, 22]. 
Although attendance to this lecture was not obligatory, 
more than 90% of participants participated. Our rand-
omized design was important to balance participants in 
both groups. Considering that expertise can affect the 
sensitivity to identify patient–ventilator asynchronies 
through ventilator waveforms [16], we took the additional 
precaution to randomize our groups stratified by experi-
ence and profession. Both study groups were exposed to 
the exact same waveforms, which helped isolate the effect 
of the display of the Pmus curve on the asynchrony detec-
tion rate. Among the limitations of the study, some stand 
out. First, all scenarios were obtained using the ASL-5000 
active breathing simulator, not real ventilator tracings 
recorded from patients. Simulated efforts are stereotyped 
and easier to interpret when compared to the chaotic 
effort pattern sometimes seen in the real world. To mini-
mize this limitation, we designed scenarios that simulta-
neously incorporated more than one type of asynchrony 
to better reflect the diversity seen in clinical settings. Sec-
ond, 49 scenarios cannot represent all variations of the 
different asynchronies. Third, participants did not have 
the chance to familiarize themselves with the use of the 
Pmus curve. Fourth, the estimated Pmus curve still lacks 
clinical validation. Consequently, the results only prove 
that asynchrony detection has the potential to improve 
if the Pmus estimation is proved acceptable in the clini-
cal scenario. Finally, this was a proof-of-concept, single-
center study and requires validation, because knowledge 
and practices regarding asynchronies can vary by center.

Fig. 2  Asynchrony detection rate (sensitivity) in the inspiratory 
muscle pressure (Pmus) group as compared to the control group. Error 
bars represent the standard error of the mean, and dots represent the 
individual sensitivity per participant
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Conclusion
Using simulated scenarios, we showed that the dis-
play of estimated Pmus waveform improved the ability of 
healthcare professionals to recognize patient–ventilator 
asynchronies by visual inspection of ventilator tracings. 
Further studies should be undertaken to verify the valid-
ity of our findings in the clinical setting.
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